Abnormal liver enzyme
Abnormal liver enzyme detection and estimation provides a comprehensive foundation for the identification of inflammatory diseases associated with the liver. These values are raised when liver cells are damaged. Routine liver function test helps in the estimation and detection of abnormal liver enzymes.
In many cases liver enzyme abnormalities are caused because of hepatocellular injury. This condition results when the liver cells are damaged producing leaky membranes. The intracellular enzymes enter the blood stream as a result of these leaky membranes. The predominant intracellular liver enzymes which are analyzed indicating the hepatocellular damage are aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Hepatitis is one of major causes for the hepatocellular damage.
Cholestasis is another condition, resulting in the production of abnormal liver enzymes. It is caused because of biliary obstruction or hepatic infiltration. The resulting enzymes produced because of these conditions include alkaline phosphatase (ALT) and gamma glutamyl transpeptidase (GGT).
Risk factors due to abnormal liver enzymes
The risk factors pertaining to the onset of liver disease are based upon factors such as behavior, medications and systemic illness. The patients categorized based on the behavior include IV drug users, history of multiple sex partners, alcohol abuse and tattoos. The patients categorized based on the medication include acetaminophen and anticonvulsant drug users. Systemic conditions such as diabetes, auto immune diseases, obesity and metastatic cancers are major risk factor indicatives of hepatocellular damage which elevate the abnormal liver enzyme values.
Liver function test
Alanine aminotransferase (ALT): It is also known as serum glutamic pyruvic transaminase (SGPT) analysis. It helps in the detection of hepatocellular damage due underlying conditions such as hepatitis. The reference range for the ALT test is 9 -72 u/l.
Alkaline phosphatase (ALP): This test used in the detection of biliary obstruction in liver and also bone disorders. The results are correlated with other liver function tests to diagnose liver cell damage. The reference range is 38-126 u/l
Aspartate aminotransferase (AST): AST is also used in the detection of liver cell damage and membrane leakage of the liver cells. The reference range is 8- 50 u/l.
Bilirubin: Bilirubin diagnostic test is administered to detect conditions such as cirrhosis, hepatitis and presence of gall stones. It is predominantly ordered in the case of newborns to detect the incidence of jaundice. The reference range for total bilirubin is 0.2-1.3 mg/dl.
Albumin: Albumin test signifies the presence of liver disorder or nephrotic syndrome. Low albumin levels indicate the presence of liver damage. The reference range is 3.9- 5.0 g/dl.
Lactate dehydrogenase (LDH): LDH values indicate the presence of tissue damage. It is used to detect tissue damage associated liver, kidney and cardiac origins. The reference range for LDH is 313-618 u/l.
Comprehensive metabolic panel (CMP): Comprehensive metabolic panel pertaining to liver disease is very significant in the detection of underlying liver disorders such as hepatitis especially in newborns. It also helps in the identification of liver damage caused because of alcohol consumption.
Gamma glutamyl transferase (GGT): This test acts as a precursor for the estimation of alkaline phosphatase values pertaining to hepatocellular damage and biliary obstruction. GGT and ALP tests are interrelated in case of hepatic and bone disorders.
Total protein: Total protein levels are measured by evaluating the albumin and globulin ratios. The reference range for total protein is 6.3- 8.2 g/dl. The decrease in total protein value indicates the onset of liver or kidney disease.
Allomap
An Allomap test measures the expression level of 20 genes and maps it in the form of an Allomap score. The Allomap testing procedures allows a physician to closely monitor heart transplant patients as well as other organ transplantation. Allomap testing measures signals in a patient's peripheral blood that can indicate any cellular rejection. This non-invasive diagnostic test can be of immense help in identifying any risk of tissue damage and success of immuno suppresive therapy.
Progressive Massive Fibrosis
Progressive massive fibrosis is a lung disease that is predominantly reported in people who work in mines. Hence it is also called Coal worker's Pneumoconiosis. Fibrosis is a nodular formation in different regions of the body. Often lungs are the most vulnerable. This is because of aerosol initiation, which has a faster chance of nodule formation causing tissue damage.
Clinical Manifestations
Most conditions associated with massive fibrosis are coherent to silicosis and pneumoconiosis. Lesions are caused due to tissue necrosis, which leads to hardening of the tissue forming nodular structures. In case of progressive fibrosis, massive scars are noticed because of dense agglomeration of the thickened nodules. These nodules predominantly appear in the upper lobes causing respiratory difficulties.
The onset of this disease is triggered by macrophage proliferation in the respective regions. The macrophages engulf the inhaled silicon particles causing the production of interleukin -I which facilitates the chemical mediation for tissue necrosis. Silica is commonly found in these necrotic nodules. The adverse effects of these silica particles are the onset of Pulmonary Alveolar Proteinosis (PAP) causing the accumulation of large particles, which can be noticed as spaces on radiological examination. Along with the affected upper lobe, the interstitial zones of the lower lobe are also obstructed and bronchial regions are damaged with the infiltration of the nodules. Honeycomb lung or asbestos bodies are common references for progressive massive fibrosis as both these conditions have giant cells upon pathological examination. Bronchogenic carcinoma and mesothelioma are the associated adverse conditions of progressive massive fibrosis.
The evaluation of patients suffering progressive massive fibrosis includes the understanding of the type of chemical or particle inhaled as it enables the physicians to rule out diagnostic errors. In cases such as pleural plaques, calcified regions of the lungs are noticed which is another cause of asbestosis. The lower region of the lungs are predominantly affected. In case of interstitial fibrosis, the bronchus and alveoli are affected with characteristic nodules of the upper and mid region. The evaluation is based on the type of chemical and the respective interleukins it releases. Most patients associated with these conditions are miners, shipyard workers, automobile mechanics and petrochemical employees.
Diagnosis and Treatment
Most diagnostic evaluations are radiological in origin as the MRI provides detailed description about the zones of the fibrosis and the size of each nodule. Histopathological analysis studies the intensity of the necrosis, giant cell presence and the macrophagic proliferation patterns. The treatment pattern is based on symptomatic analysis. Since the condition includes both lower and upper lobes, any associated mycobacterial infection has to be treated. Oxygen is given as a critical care measure in patients with hypoxemia. Surgical interventions are applicable in case of intense and irreversible tissue necrosis. Patients with progressive massive fibrosis are advised to quit smoking if as it causes intense damage.
Enter your health or medical queries in our Artificial Intelligence powered Application here. Our Natural Language Navigational engine knows that words form only the outer superficial layer. The real meaning of the words are deduced from the collection of words, their proximity to each other and the context.
Diseases, Symptoms, Tests and Treatment arranged in alphabetical order:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Bibliography / Reference
Collection of Pages - Last revised Date: December 22, 2024